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Abstract: In this paper, we present a study on the 
characterization and the classification of textures. This 
study is performed using a set of values obtained by the 
computation of indexes. To obtain these indexes, we 
extract a set of data with two techniques: the computation 
of matrices which are statistical representations of the 
texture and the computation of "measures". These 
matrices and measures are subsequently used as 
parameters of a function bringing real or discrete values 
which give information about texture features. A model of 
texture characterization is built based on this numerical 
information, for example to classify textures. An 
application is proposed to classify cells nuclei in order to 
diagnose patients affected by the Progeria disease. 

Keywords: texture indexes, gray level size zone matrix 
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1. INTRODUCTION  
Pattern recognition is a major part of artificial 

intelligence that aims to automate the identification of 
typical situations. It is a major objective for many 
applications: handwritten character recognition (optical 
character recognition, automatic reading of postal letters 
and bank checks, etc.), video surveillance (facial 
recognition), medical imaging (ultrasound, CAT scan, 
Magnetic Resonance Imaging), etc. At the heart of the 
pattern recognition issue, there is a first and unavoidable 
step: shape characterization. Indeed, in order to recognize 
an object or a person, it is necessary to describe it by 
defining its characteristics (morphological, geometrical, 
textural etc.) and then to find and identify these 
characteristics on the digital source under investigation. 
For this reason, it is often helpful to distinguish two 
classes of characteristics: the shape using global analysis 
algorithms or outline analysis algorithms and the texture. 

The aim of this paper is to create a model to classify 
culture skin fibroblast nuclei in patients affected by 
Progeria disease (otherwise known as the Hutchinson-
Gilford syndrome). This rare disease (which affects about 
one hundred patients in the world) is cause by a mutation 
in a gene encoding lamins A and C, two proteins localized 
at the nuclear periphery (lamina) and within nucleoplasm 
[5]. Progeria patients exhibited an accelerate aging. The 
presence of mutated lamin A protein resulted in abnormal 
nuclear shape and texture (not homogeneous), evidenced 
by the immunodetection of lamin A/C (primary antibody 
directed against lamin A/C, secondary antibody coupled 
to Fluoresceine Iso Thio Cyanate) (see fig. 1). Digitized 
pictures of immunostained nuclei were sampled using a 
conventional epifluorescent microscope (Leica DMR) 
coupled to a Princeton-Roper camera. The two interest of 
this study are i/ to design an automatic classification of 

abnormal nuclei to be compared with the classification 
made by an expert microscopist through the analysis of 
more nuclei than possible by the expert; ii/ to follow up 
using this automated procedure the eventual nuclear 
changes induced by therapeutic drugs. 

 
The first work on characterization and classification 

shape’s of a nucleus [10, 11] made it possible to obtain a 
classification success rate of more than 95% thanks to the 
creation and use of dedicated shape indexes. The texture 
characterization method, on the other hand, was less 
satisfactory. This original approach, based on indexes 
initially obtained for shape characterization, was not able 
to achieve a success rate of more than 85%. This rate is 
inferior to that of expert’s repeatability rate (which 
corresponds to the percentage of nuclei classified in the 
same way by an expert on two successive analysis, and is 
between 86 and 89%). The result of this first attempt, 
being inferior to the repeatability rate, we wished to 
improve this result and obtain one near to that given by 
shape classification. 

 
OUR CONTRIBUTION 

With this in mind, we present classification and 
validation methods used, followed by the characterization 
techniques used in order to improve the results of texture 
classification. Cooccurence matrices and Haralick indexes 
will be presented first. The Run Length Matrix is used 
and modified in order to create a novel texture 
homogeneity characterization method. Our contribution 
introduces a new method based on the construction and 
analysis of statistical matrices that represent the texture. 



All these techniques have been studied and validated by 
the model developed in order to solve the texture 
characterization issue. 

2. CLASSIFICATION  
The aim of classification is to attribute a class to each 

object being studied. As mentioned earlier, the objective 
of this sub-task is to determine whether a cell’s nucleus 
has a normal (homogeneous) or an abnormal 
(inhomogeneous) texture. 

The classification methods are said to be supervised, 
as they require a reference expert analysis. In this study 
we benefit from of biologists and geneticists knowledge 
who have specified classes (healthy and pathological) and 
subclasses (normal and irregular shapes, homogeneous 
and non-homogeneous textures, etc.). 

A classification model is usually built using a learning 
method, with the help of data divided into known classes. 
Though applied to a specific problem, the model must be 
capable of being generalized (in so far as data is 
concerned). With this objective, the data is separated into 
two groups: a learning sample and a validation sample. 
The classifier must have the same performance rate 
through learning and validation. It is necessary to 
construct a characteristic vector for each data prior the 
classification phase. The vector must be relevant to the 
problem in order to allow accurate classification and 
prediction. The major risk when providing too many 
characteristics to the classifier is rote learning. The 
greater the vector's dimension, the greater the flexibility 
of the model and the better the classification, but the 
greater the likelihood that the model's performance will 
be poor for a data set not used during the validation. Each 
model must then be systematically validated and the best 
classification with the validation sample obtained. Due to 
the few elements in the sample at our disposal, validation 
was done according to the Leave One Out protocol [8]. 

The method of classification chosen for the model is 
logistic regression [7]. It is a linear model particularly 
well adapted to classification problems with two classes: 
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of the model, the maximum likelihood method is often 
used, which maximizes the probability of obtaining values 
observed on the learning sample. It consists in finding the 
parameters that optimize the likelihood function 
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£ α,Y( ) = PY 1− P[ ]1−Y . Logistic regression is preferred over 
discriminate analysis [3] because of its greater reliability,  
versatility, the few restrictions that it imposes on the 
variables and the clarity of its results.  

Nevertheless, other methods will also be used in order 
to compare results. These methods are more complex, 
non-linear, and are obtained through different conception 
techniques: neural networks [9], k-nearest neighbors [13], 
and random forests [14]. 

3. GRAY LEVEL COOCCURRENCE MATRIX  
The cooccurence matrix technique is one of the oldest 

and most efficient methods of statistical texture 

representation. This method defines texture according to 
gray level special distribution and characterizes texture by 
means of second order statistics. In order to accomplish 
this, it is interested in the relationships that exist between 
the gray scale of pixels of the texture for a given 
displacement vector d. The resulting matrix is of size 

, where N is the number of gray levels in the 
texture. For a given displacement vector , an 
element (i,j) of the matrix is defined by the number of 
pixels in the texture that have a gray level j at a distance d 
from a pixel of gray level i.  This can be written as 
follows: 
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Figure 2 shows an example of cooccurence matrix 
calculation. 

 
In this study we are not only interested in the 

neighbors but rather the neighborhood in general. Thus, 
for a given spacing distance E, four matrices are 
calculated, one for each of the four displacement vectors 

, ,  and , these are then 
averaged to combine all the extracted information. From 
the resulting reduced matrix, 15 second-order texture 
indexes (Haralick features [6]) are extracted allowing the 
characterization of the texture.  

Next, a systematic study, aimed at finding the best 
subset of indexes, was undertaken. The best result was 
obtained for a subset of 8 indexes, on images reduced to 
32 gray levels with a distance of one pixel. This obtains a 
classification success rate of 90% by logistic regression. 
Figure 3 illustrates the distribution of probabilities as 
given by the model.  

 



A high concentration rate at both extremities can be 
seen, which shows that the elements are well separated. 
But 40 ambiguous cases exists (for which the given 
probability is near the decision value of 0.5, between 0.3 
and 0.7). Moreover, 8 important errors appear: dark green 
(respectively light green) elements in the right hand 
(respectively left hand) column. These errors correspond 
to elements for which the model gives a probability upper 
than 0.8 (respectively lower than 0.2) but which have an 
inhomogeneous (respectively homogeneous) texture. The 
presence of these non-negligible errors and ambiguities 
has lead us to improve the model. 

4. GRAY LEVEL RUN LENGTH MATRIX  
The Gray Level Run Length Matrix is a statistical 

texture characterization method [2,4,6]. This method 
consists in counting the number of pixel segments having 
the same intensity in a given direction, then representing 
the results in a matrix. A direction (0°, 45°, 90° or 135°) 
and a number of gray levels are decided on beforehand. 
The value contained in the matrix’s (l,n) square is equal to 
the number of segments of length l and gray level n. This 
implies that the matrix’s number of columns is dynamic, 
as it is determined by the length of the longest segment. 
By design, this calculation is symmetrical and 
consequentially, it is unnecessary to consider the four 
complementary directions (180°, 225°, 270° or 315°, in 
this example 8 possible directions between a given pixel 
and its neighbors are taken into account). Figure 4 shows 
an example of the calculation of a Run Length Matrix: 

 

 
Once the matrix obtained, 11 indexes are calculated 

[12] to determine the vector that characterizes the texture. 
To establish our model, the matrix for a given gray level 
and for four directions was calculated. Then, for each 
index, the average value of the four directions was taken. 
A systematic study found that the best model was 
obtained for a set of 7 indexes and 32 gray levels. The 
classification success rate was 84.81% by logistic 
regression, which is inferior to the rate obtained with the 
cooccurence matrix and the Haralick features (90%).  

5. NEW METHOD: GRAY LEVEL SIZE ZONE 
MATRIX 

A homogeneous texture is composed of large areas of 
the same intensity, and not of small groups of pixels or 
segments in any given direction. To take this fact into 
consideration, it was necessary to take into account, in a 
matrix, the size of each area with pixels of the same 
intensity level. This matrix was calculated according to 
the Run Length Matrix principle: the value of the matrix’s 
(s,n) square is equal to the number of areas of size s and 
of gray level n. Figure 5 shows an example of the 
calculation of such a matrix, baptized Size Zone Matrix. 

 
The resulting matrix has a fixed number of lines equal 

to the number of gray levels and a dynamic number of 
columns, determined by the size of the largest area. The 
more homogeneous the texture, the wider and flatter the 
matrix will be. This matrix has the advantage of not 
requiring calculations in several directions, which are 
replaced by tagging different areas. However, specifying 
the number of gray levels is still necessary, but this 
renders the calculations robust to noise. The 11 same 
indexes as for the Run Length Matrix with 32 gray levels 
are calculated. The classification success rate for these 11 
indexes is 91.11% by logistic regression, which is the best 
result obtained by all the techniques used so far. This 
improvement can be clearly seen by comparing figures 3 
and 6. A better distribution of the elements at both 
extremities and a diminution of 16 the ambiguous cases 
(then 29 ambiguous cases) is visible. However, six 
important errors remain.  

 
However, when examining the data, the indexes and 

the false positive results, it became clear that a specific 
texture case was not being correctly characterized and 
was the cause of the remaining errors: nuclei with large 
homogeneous areas, but with high variations in the 
intensity between the areas, making them inhomogeneous 
textured nuclei.  



 
To characterize these nuclei types, two new indexes, 

which are weighted variances of gray level or area size, 
are needed:  
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with N and S the dimensions of the matrix and M(n,s) the 
matrix’s element of coordinates (n,s). The more the 
texture consists of large areas with high intensity 
variations between them, the higher the value of the  
index. In the case of a more homogeneous texture, the 
value of this index will be low. The same is true for the 

 index, concerning area size.  
In this way two new texture indexes are added to the 

11 previous ones, making a total of 13 indexes. An 
extensive study was once again undertaken, using four 
different classification methods: logistic regression, k-
nearest neighbors, random forests and neural networks. 
For nearest neighbors, we tested k equal to the number of 
indexes plus 1 to 30 and k equal 1 to 30. Best result is 
obtain with k equal to 1. Neural networks is a multi-layer 
perceptron, with a hidden layer. We tested various 
numbers of nodes in hidden layer: number of node of 
input layer divide by 2 to 6. Best result is obtain for 2. 
This study proved that the best subset is composed of 12 
indexes (only the LRHGLE index is not used) on images 
reduced to 32 gray levels and classified by logistic 
regression. The different method’s performances can be 
seen and compared in figure 8: better distribution of the 
elements at both extremities and number of ambiguous 

cases reduces to 16. Thanks to the use of the two new 
indexes in this new model composed of the 12 most 
pertinent indexes, the classification success rate of 
92.59% has been reached. For the best configuration of 
indexes, performances between regression logistic and 
multi-layers perceptron are comparable.  
 

 
Our model’s validity is illustrated in figure 9, which 

shows the distribution of probabilities as given by the 
model. The high concentration rate at both extremities of 
the histogram and the near absence of ambiguous cases 
(having a probability near the decision value of 0.5) show 
the efficiency of the classification and the pertinence of 
the choice of indexes. 

 
 
6. CONCLUSION AND FUTURE WORK 

In this article, the problem of texture classification, 
applied to cell nuclei classification, has been covered. The 
main goal was to achieve pertinent texture homogeneity 
characterization. To do so, two existing texture 
characterization methods have been presented: the 
cooccurence matrix with Haralick features and the Run 
Length Matrix. Applied to this particular problem these 
methods did not obtain a satisfactory success rate (90%). 
For this reason, a novel method of texture homogeneity 
characterization has been presented. It consists in tagging, 
then counting the size of areas of the same intensity level. 
This allows a matrix, representative of the texture’s 
homogeneity, to be found. In order to improve the 



pertinence, two new texture characterization indexes have 
also been determined. When combined and applied to 
nuclei texture classification, this method and these 
indexes obtain a success rate of 92.6%. 

The initial aim of our work was to classify nuclei into 
health and unhealthy groups.  Expert diagnosis showed 
that it was necessary to examine both the shape and the 
texture of the nuclei in order to achieve this objective. 
Our shape classification model (based on shape indexes) 
presented in [10] achieved a classification success rate of 
95.4% when applied to nuclei’s shape, but was only 
86.9% successful with respect to the initial problem. The 
model presented in this article obtains a 92.6% success 
rate when applied to nuclei’s texture, and when combined 
with the shape classification model, the overall success 
rate with respect to the initial problem reaches 87.7%. 
Even though this near one percent improvement may 
seem slight, it is in fact significant. As there is a large 
intersection between abnormally shaped nuclei and 
inhomogeneous textured nuclei, most of the abnormally 
textured ones are already classified by shape. The best 
possible improvement could only have been of 1%, so a 
0.8% improvement is highly pertinent with respect to the 
probabilities. 

By studying the intersections between the different 
classes of nuclei, the following conclusion was reached: 
only 94% of nuclei can be classified by their shape and / 
or texture alone. As a consequence, in our future work, 
complementary models will have to be established in 
order to characterize the unfrequented diagnostic criteria 
and thus further improve the initial problem’s 
classification success rate. These unfrequented diagnostic 
elements are related to the presence of holes and focis. 
Holes are areas of the nuclei in which no lamin A/C are 
present, which leads to an absence of a reaction to the 
marker (cf. figure 10 a and b). A foci is a small, near 
circular area of high intensity (cf. figure 10 c and d). 

 

 
To detect and characterize these elements, we wish to 

determine an original approach, based on texture 
representation by its volume below the surface (cf. 
figure 11). This representation will allow the extraction of 

troughs and peaks, amongst which the 3D representation 
of holes and focis can be found. Once extracted, these 
volumes could then be characterized by a 3D extension of 
2D shape indexes. 
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