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This paper describes the sequence of construction of a cell nuclei classi¯cation model by the

analysis, the characterization and the classi¯cation of shape and texture. We describe ¯rst the

elaboration of dedicated shape indexes and second the construction of the associated classi¯-
cation submodel. Then we present a new method of texture characterization, based on the

construction and the analysis of statistical matrices encoding the texture. The various char-

acterization techniques developed in this paper are systematically compared to previous

approaches. In particular, we paid special attention to the results obtained by a versatile
classi¯cation method using a large range of descriptors dedicated to the characterization of

shapes and textures. Finally, the last classi¯er built with our methods achieved 88% of classi-

¯cation out of the 94% possible.
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matrix; classi¯cation.

International Journal of Pattern Recognition
and Arti¯cial Intelligence

Vol. 27, No. 1 (2013) 1357002 (23 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0218001413570024

1357002-1

http://dx.doi.org/10.1142/S0218001413570024


1. Introduction and Context

Pattern recognition is a major part of arti¯cial intelligence that aims at automating

identi¯cation of typical situations. It is a major objective for many applications:

handwritten character recognition (such as optical character recognition and auto-

matic reading of postal letters and bank checks), video surveillance (facial recogni-

tion), medical imaging (ultrasound, CAT scan, Magnetic Resonance Imaging), as

well as the context of this paper: computer-aided diagnosis.

At the heart of the pattern recognition, the ¯rst and critical step is pattern

characterization. Indeed, in order to recognize an object or a person, it is necessary to

speci¯cally select the characteristics of interest (morphological, geometrical, tex-

tural,…) and then to identify these characteristics on the digital source under

investigation. As a front end in a typical classi¯cation system, features extraction is

of key signi¯cance to the overall system performance. For this reason, it is often

helpful to distinguish between two classes of characteristics: the shape using global

analysis algorithms29 (projection histograms,39,45,55 invariant moments,13,14 etc.) or

outline analysis algorithms (Freeman chain code,3 MSGPR,23 Fourier descrip-

tors,8,45,51,53 etc.) and the texture41,46,54 using statistical analysis,9,16,17 wavelets

transform8,47,48 or local binary pattern33,34 for example.

The aim of this paper is to create a model to classify cultured skin ¯broblast nuclei

in patients a®ected by Progeria disease (also known as Hutchinson�Gilford-Progeria

syndrome). In 2003, a major research advance11,37 showed that this rare disease

(which a®ects about 100 patients in the world) is caused by a mutation in LMNA

gene on Chromosome 1. LMNA gene codes for lamins A and C, two proteins localized

at the nuclear periphery and within nucleoplasm. Progeria patients exhibit an ac-

celerated aging. The presence of mutated lamin A protein results in abnormal nu-

clear shape and texture, as revealed by the immunodetection of lamin A/C (primary

antibody directed against lamin A/C, secondary antibody coupled to °uoresceine

isothiocyanate (FITC), see Fig. 1). The digitized pictures of immunostained nuclei

were sampled using a conventional confocal bi-photonics epi°uorescent microscope

(Leica DMR) coupled to a Princeton-Roper camera.

(a) (b) (c) (d)

Fig. 1. Examples of nuclei highlighted with FITC: (a) healthy, (b) pu®y shape, (c) and (d) heterogeneous

texture. Digitized pictures of immunostained nuclei were sampled using a conventional epi°uorescent

microscope (Leica DMR) coupled to a Princeton-Roper camera.
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According to the expert's experience, the two main clues for the presence of the

mutated gene are the shape [normal or pu®y, see Figs. 1(a) and 1(b)] and the texture

(homogeneous or heterogeneous, see Figs. 1(c) and 1(d)). But at present time, nuclei

labeling is highly time consuming: it requires at least one day to an expert to label

approximately 300 nuclei, so a small sample according to the nuclei is acquired.

Moreover, it appears that an expert does not provide the equal labels to di±cult cases

when he labels twice the same sample (ratio of repeatability lower than 1). So the two

goals of this study are:

. to design an automatic classi¯cation method of abnormal nuclei matching mi-

croscopist expert e±ciency, thus enabling the analysis of large numbers of nuclei

with the same accuracy;

. to use this automated procedure to follow up the eventual nuclear changes induced

by therapeutic drugs.

2. Classi¯cation

The aim of classi¯cation is to attribute a class to each object under consideration. In

our context, it should be a two-class problem: the objective is to determine whether a

cell nucleus is normal (healthy) or abnormal (pathological). However, we bene¯t from

the knowledge of biologists and geneticists who not only have speci¯ed classes

(healthy and pathological), but also speci¯ed subclasses (normal and irregular

shapes, homogeneous and nonhomogeneous textures, which are the two main clues in

the presence of the mutated gene). We subsequently have identi¯ed a series of rel-

atively independent subproblems that may be solved independently. In addition,

since a set of 2800 fully expertised nuclei is available, we can therefore take advan-

tage of supervised methods to design the various classi¯ers required for this study.

Such classi¯ers are usually built using a learning method, with the help of cross-

validation to warrant generalization (i.e. their e±ciency must not degrade for new

data). According to the cross-validation protocol, the data are separated into two

groups: a learning set and a validation set. The classi¯ers are built using the learning

set but are expected to reach the same level of performance on the validation set.

Prior to the classi¯cation phase, it is necessary to construct a vector of char-

acteristics describing the data. The vector must be relevant to the problem in order

to allow accurate classi¯cation and prediction. The major risk when providing too

many characteristics to the classi¯er is over¯tting. The greater the dimension of the

characteristic vector, the greater the °exibility of the model and the better the

classi¯cation on the learning set, but the greater the likelihood that the model's

performance will be poor for new data. Each model must then be systematically

validated and the best one for the validation set is selected. In this paper, the

validation is done according to K-Fold Cross Validation10,40 or leave one out (LOO)

protocol10,30 (a K-fold validation with k equal to the size of the working set). The

choice of protocol depends on the size the working set.
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The main model chosen for classi¯cation is the logistic regression.2,19,32 It is a

linear model particularly convenient for two-class classi¯cation problems: P ¼
P ðY =~xÞ ¼ efð~xÞ

1þefð~xÞ
with ~x ¼ ðx1; . . . ;xnÞ the characteristic vector of the input data,

fð~xÞ ¼
P

i �ixi and P ðY =~xÞ the conditional probability P of the variable ~x to belong

to the class Y . The likelihood function Lð�;Y Þ ¼ P Y ½1� P �1�Y is used to estimate

the coe±cients �i of the model. Nonlinear models are also used in order to analyze

results with more details:

. K-nearest neighbors, one of the oldest, simplest and most intuitive nonlinear

methods of classi¯cation.12 We have systematically tested various numbers of

clusters (k).

. Random forests (RF),6 a nonlinear classi¯cation technique based on the use of

classi¯cation and regression trees (CART)4 for the building of each tree. It is one

of the most recent developments in the research of the aggregation of randomized

decision trees. It synthesizes approaches developed in Refs. 1 and 5.

. Neural networks,31 a method widely used in classi¯cation, thanks to its potential of

modeling (it can approximate any su±ciently regular function). It can solve a large

variety of problems, including complex phenomena, complex data that eventually

do not follow probabilistic laws. We use a Multi-Layer Perceptron (MLP)36 with

one hidden layer. The number of nodes in the hidden layer was calculated

according to the number of neurons in the input and output layers:

ðNInput þNOutputÞ=�. We systematically tested various values of the parameter �

in order to ¯nd the best network design.

Remark about the dataset of nuclei. A set of 2800 nuclei labeled by experts is

available, but only 135 of the nuclei (5% of the dataset) have a nonhomogeneous

texture. As far as texture is concerned, building a classi¯er may be tricky since the

sample size of the two classes is particularly unbalanced. In that case, we imple-

mented an under-sampling protocol25 in order to give the two classes comparable

sizes: the majority class (nuclei with homogeneous textures) is reduced to a selection

of the 135 most representative nuclei (paragons). The paragons are selected by a 135-

means clustering,18 which is turned robusta by the determination of strong forms as

observed after several runs of the algorithm. Paragons are the nearest nuclei of the

barycenters of strong forms. A working set of 270 nuclei (135 paragons and the 135

nuclei with nonhomogeneous texture) is subsequently obtained. Note that other

techniques are available to deal with unbalanced data. It is possible to implement

over-sampling26: random or directed duplication of nuclei of the minority class

(nonhomogeneous) until the sets are balanced. However, it is shown in Refs. 21, 22

and 25 that this technique is generally less e±cient than under-sampling. Other

techniques based on asymmetric entropy measure28 or the use of an auto-associator

neural network21 may also be used as well.

aK-means properties that make consecutive iterations provide di®erent results. But the strong forms are

groups of nuclei systematically together, so paragons are highly stabilized results.
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Finally, the resulting small size of the working set for texture classi¯cation (270

nuclei) suggests validation by the Loo protocol.30

3. Shape Characterization and Classi¯cation

Shape analysis is the most important issue for the diagnosis of nuclei24: the study of

expert's annotations reveals that 80% of pathological nuclei have abnormal (pu®y)

shapes.

3.1. Notations

Let fðxÞ : E ! T be a gray-level image, where E � Z2 is the space pixels x ¼ ðx; yÞ 2
E and the image intensities are discrete values which range in a closed set

T ¼ ft1; t2; . . . ; tNg, �t ¼ tiþ1 � ti, e.g. for a eight-bit image we have t1 ¼ 1, N ¼
256 and �t ¼ 1.

Let assume also that image f is segmented into its J °at zones (i.e. connected

regions of constant value, see Sec. 4): E ¼ [J
j¼1Rj½f�, \J

j¼1Rj½f� ¼ ;. The size (surface
area) of each region is sðjÞ ¼ jRj½f�j. Hence, we consider that each zone Rj½f� has a
constant gray-level intensity gðjÞ.

Moreover, we note ’ 2 f a connex binary pattern included in f, with Að’Þ ¼ j’j
the surface (noted A if unambiguous) and P the perimeter (notations are given at the

end of the paper).

3.2. Previous works

3.2.1. Moments: Hu, Legendre and Zernike

Moments in mathematics (notably in probability) are derived from moments in

physics. The momentmnð�Þ of order n of a function � is de¯ned on an interval � (not

reduced to a point) of R.

mnð�Þ ¼
Z
�

xn�ðxÞdx:

So the centered moment of order n ¼ pþ q applied to an image with a pattern ’ of

centroid B’ ¼ ðx; yÞ is

mpqðfÞ ¼
X

ðx;yÞ2’
ðx� xÞpðy� yÞqfðx; yÞ:

Moments provide statistical information about the shape:

. order 0, the surface of the shape: A ¼ m00

. order 1, the centroid of the shape: x ¼ m01

m00
and y ¼ m10

m00

. and so on

Shape and Texture Indexes
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Three families of moments, which are invariant with respect to translation, ro-

tation and homothety are used here to characterize the shapes of nuclei:

. Hu moments20 are seven moments resulting from products and quotients of nor-

malized centered moments of order 3.

. Legendre moments43 are orthogonal moments created with Legendre polynomials.

They constitute a complete and orthogonal basis on the interval ½�1; 1�.
. Zernike moments52 are orthogonal complex moments based on a polar represen-

tation of the shape.

To characterize the shape, we compute the Legendre and Zernicke moments of

order 4 and the Hu moments for each nucleus. The subset of moments giving the best

classi¯cation rate is systematically considered for by cross-validation (see Sec. 2).

The winner subset contains 17 moments, and achieves 81% of prediction with neural

network (with � ¼ 3) and cross-validation. Moments of orders 3 and 5 yield results of

lower quality.

3.2.2. Projection histograms

The projection histogram technique27,45,55 (or Integral Projection Function) is

frequently used in character recognition. It provides information about the thick-

ness of the shape in various directions. Each histogram is constructed by counting

the numbers of pixels in a given direction � so as to get the so called marginal

distribution: HP�ðfÞ ¼
P

’ f�ðxÞ. Four directions of projections are available in Z2:

the horizontal, the vertical and the two diagonals. The method is insensitive to

translation. On the other hand, it is sensitive to both rotation (it can be ¯xed by a

preliminary rotation according to the major axis), and scale transformation (it

is possible to give shapes equal scales since there is a constant ratio between

projections).

Subsequently, each nucleus is rotated such that its major axis coincides with the

horizontal axis and scaled to be bounded by a box of dimensions N �N. Then the

horizontal and vertical projection histograms provide 2N characteristics. We have

tested this technique for various values of N for each classi¯cation method (by

cross-validation). The best result (83%) is obtained by the logistic regression and

cross-validation, for a number of characteristics N equal to 32 (dimensions

16� 16).

3.3. Shape indexes

Shape indexes24 were presented for the ¯rst time by Santalo38 in a book about the

mathematical properties of convex shapes. Their de¯nition and properties can be

found in Ref. 44.

De¯nition 1. A \shape index" is any parameter, coe±cient or combination of

coe±cients providing numeric information about shape, and satisfying the following

G. Thibault et al.
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properties:

(1) No dimension.

(2) Invariant under scale, rotation and homothety transformations.

De¯nition 2. Each value or set of values \measured" on the shapes is called a

\measure".

The shape indexes are often functions of several measures (see Fig. 2). A complete

list of the measures and indexes used in our work is presented in the appendix of this

paper. Some well-known measures like the Feret diameter or the radius of maximum

(respectively minimum) curvature are not used here because they require too much

computation time (high complexity).

The main advantage of shape indexes is their high °exibility. Indeed, it is easy to

build new indexes according to the problem to be solved. These speci¯c indexes have

a high capacity to describe the aspects of interest of the shape under consideration

and are expected to give better classi¯cation.

3.3.1. Four new shape indexes

3.3.2. Indexes for ellipse characterization

Healthy nuclei have a regular and convex shape, close to an ellipse (see Figs. 1(a) and

3(a)). The shape results from the pressure of the cover slip on the microscope slide

during observation. It is consequently judicious to build indexes that characterize the

elliptic nature of the nuclei.

The area of an ellipse with a the semi-major axis and b the semi-minor axis is:

A ¼ �ab [see Fig. 3(a)]. An ellipse as the following properties:

. Themajor axis coincideswith themain axisMA (of lengthLMA) and the diameterD.

. The semi-major axis is equal to the longest radius Rmax.

. The minor axis coincides with the secondary axis SA.

. The semi-minor axis is equal to the shortest radius Rmin and the thickness from

diameter ED.

Fig. 2. Examples of measures: surface (black), perimeter (cyan), main and secondary axis (red), convex

hull (purple), geodesic diameter (blue) and Euclidian diameter (yellow), smallest (respectively largest)
circumscribed (respectively inscribed) ball (green) (color online).

Shape and Texture Indexes
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We can deduce the following equalities: a ¼ 1
2 LMA ¼ 1

2 D ¼ Rmax and b ¼ 1
2 LSA ¼

ED ¼ Rmin (see Fig. 3).

Three new shape indexes can be deduced from these equalities:

Radius

�EllipseR ¼ �
RminRmax

A
2 ½0; 1�

Main axis

�EllipseMA ¼ �

4

LMALSA

A
2 ½0; 1�

Diameter

�EllipseD ¼ �

2

EDD

A
2 ½0; 1�:

The indexes concerning the radius or the diameter rely on the position of the rim.

The indexes constructed from the main axis deal with the surface of the shape. As far

as the shape under consideration is a true ellipse, denominators and numerators are

equal, so their values are 1. The suggested ranges of variation correspond to convex

shapes varying from segment to disk.

3.3.3. Characterization index for convexity

In the previous section, we have constructed three new shape indexes in order to

characterize departure from the \normal" ellipsoid shape. A complementary point of

view may concern the characterization of shape abnormality.

Pu®y nuclei contain many concave border areas of various sizes. To evaluate these

concave areas, it is possible to calculate the number of connected components Ncc

that remain when the shape is subtracted from its convex hull Ncc ¼ cardðCHð’Þn’Þ
[see Fig. 3(d)]. In the following, those connected components are called \gap

(a) (b) (c) (d)

Fig. 3. (a) Illustration of the semi-axes on a nucleus with a normal shape. (b) Main axis (red) and
secondary axis (purple). (c) Longest radius (orange) and shortest radius (yellow). (d) Illustration of the

calculation of the measure NCce, it computes the number of gap connected components (number of purple

components) (color online).

G. Thibault et al.
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components". A normalized version of the measure is used to elaborate the corre-

sponding index:

�Ncc
¼ 1

1þNcc

2 �0; 1�:

The index is equal to 1 if no gap component is found and tends to 0 as the number of

gap components in the shape increases.

In practice, components whose area equals one pixel result from resolution errors

and cannot be considered as gap components. Even small gap components (i.e. a few

pixels) may not be signi¯cant, at least with respect to the classi¯cation of nuclei. In

fact, the sizes as well as the number of gap components must be taken into account

when diagnosing nuclei. Thus Ncc requires a calibration to decide whether a gap

component should be counted or not. A systematic analysis of the percentage of

correct classi¯cations (as observed by index �Ncc
) versus the size and the number of

gap components was consequently conducted (see Fig. 4): for a given size s and a

given number n, we considered that a nucleus has an abnormal shape if it contains at

least n gap components with an area greater than or equal to s.

A systematic analysis indicates that 95.4% of nuclei with pu®y shape have at least

a gap component of 32 pixels or two gap components of 12 pixels. Note that the °at

zone in the resulting surface corresponds to nondiscriminant sizes and/or numbers,

which result in the classi¯cation of all nuclei in the \normal shape" class (70% of the

nuclei considered for this study have a normal shape). Both thresholds are given

equivalent weights in �Ncc
, so that their combination provides a percentage of

Fig. 4. Surface representing the percentage of classi¯cation of nuclei according to the number and the size

of gap components.
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prediction upper than 90% for the subproblem of shape characterization with this

single index.

3.4. Classi¯cation of cell nuclei shapes

A total of 13 indexes selected from the scienti¯c literature44 are considered in ad-

dition to the new four shape indexes speci¯cally designed for the characterization of

the shapes of nuclei. For each classi¯er, we perform a systematic/exhaustive study

(with 10-fold cross validation) in order to ¯nd the best subset of indexes (see Fig. 5).

LR and neural networks produce comparable results. For both models, the highest

classi¯cation rate (95.4%) is obtained with 10 indexes (including the four indexes

proposed): the learning and validation errors converge for a number of indexes equal

to 10 (results not shown). The probability to get such a result by chance is lower than

10�4 and the 95% con¯dence interval is [95.2, 95.6].15 The LR is selected over the

neural network since it is preferable to use the simplest model with the lowest

complexity to get the highest robustness. Without using the four indexes that we

elaborated, the best subset is composed of 10 out of the 13 remaining indexes. It

provides 93.6% of prediction with [93.3, 93.9] as 95% con¯dence interval. The result

is 2% lower than the one obtained by the previous model composed of our indexes

(�Ncc
and �Ellipse�). This result demonstrates the e±ciency of the new indexes, since

the con¯dence intervals do not overlap.

The analysis of the distribution of probability given by the classi¯er (see Fig. 6),

reveals that:

. A clear separation of nuclei into 2 groups: nuclei concentrated at both extremities

in the histogram.

. A quasi-absence of severe errors: false (errors of classi¯cation) with extreme

probabilities (lower than 0.2 or upper than 0.8).

Fig. 5. Comparison of the e±ciency of di®erent classi¯cation methods: nearest neighbors (NN with
Ni þ 5), logistic regression (LR), RF and MLP with � ¼ 4 as a function of the number of indexes (color

online).
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. The presence of few ambiguous cases: nuclei with probabilities inside the interval

[0.3, 0.7] (near of the decision value 0.5).

These three characteristics highlight the low level of ambiguity in the classi¯ca-

tion and con¯rm the e±ciency of the submodel.

4. Characterization and Classi¯cation of the Texture

4.1. Previous work

4.1.1. Shape indexes for texture characterization

Shape indexes have shown their e±ciency in the submodel for shape classi¯cation.

However, Chen et al. have developed an approach that allows us to use shape indexes

for texture characterization.7 They exploited the idea that an image is the sum of all

binary thresholds:

fðxÞ ¼
XN
�¼1

fbðx; �Þ with fbðx; �Þ ¼
1 if fðxÞ � �

0 else

�

where N is the number of gray levels of the image, and E� is the set of connected

components from the thresholded image fbðx; �Þ and � 2 ½1;N � the threshold value.

For each value of � and for a shape index �, we can compute:

�� ¼
P

’2E�
½Að’Þ � �ð’Þ�P
’2E�

Að’Þ :

The four values max, average, weighted average and sample standard deviation,

which are calculated for all values of �, constitute the texture characteristics for the

index �.

Fig. 6. Probability distribution of nuclei given by the submodel of shape classi¯cation. The x-axis
indicates the probability for a nucleus to belong to the group with normal shape. In green (respectively

dark green) nuclei with normal shape (respectively pu®y) (color online).
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We used this technique with the indexes composing the best subset of shape

indexes previously found (see Sec. 3.4). However, each index produces four values so

that over¯tting may occurr. Moreover, any subset of indexes is not e±cient to solve

the subproblem of texture classi¯cation. The best result (composed of 28 indexes)

provides only 85% of prediction.

4.1.2. Gray level cooccurrence matrix and Haralick features

The gray level cooccurrence matrix (COM or dependency spatial matrix) is one of

the most well-known, oldest and e±cient methods of statistical texture representa-

tion. It realizes a second-order statistical analysis, by the study of spatial relation-

ships of pairs of pixels.16,17

The COM enumerates existing relationships between the gray levels of pixels in

the texture for a given displacement (vector of translation) ~d. The result is a square

matrix of size N �N, where N is the number of gray level of the texture. For a given

displacement ~d ¼ ðdx; dyÞ, a matrix element Mdðgx; gyÞ is the number of pixels that

have a gray level gy located at ~d from a pixel of gray level gx (see Fig. 7). This can be

written as follows:

Mdðgx; gyÞ ¼ cardfððx; yÞ; ðxþ dx; yþ dyÞÞ=fðx; yÞ ¼ gx; fðxþ dx; yþ dyÞ ¼ gyg:

A COM relationships between pixels, according to two aspects: local (gray level)

and spatial (displacement). However, when all gray levels and several displacements

are considered, it generates a signi¯cant amount of information. For a given gray level

N, we compute four matrices for the displacements ~d1 ¼ ð1; 0Þ, ~d2 ¼ ð1; 1Þ, ~d3 ¼ ð0; 1Þ
and~d4 ¼ ð�1; 1Þ. Thenwe take the average of the resultingmatrices,48 which allows us

to merge information and abstract directions. However, it is always necessary to

compute matrices for various displacements (distance "~di, " 2 N�) and gray level

reductions, which increases the computing time and quantity of information.

With this reduced matrix, we compute Haralick's features (second-order texture

indexes).16,17 We implement a systematic search in order to ¯nd the most e±cient

classi¯cation method and the best subset of texture indexes. Moreover, we

perform the computations for 16, 32 and 64 gray levels, and for various distances

(" ¼ 1; . . . ; 5). As a consequence of the low number of nuclei in the working set (see

Sec. 2), validation is accomplished with the Loo protocol.

Fig. 7. Two cooccurrence matrices for a 4� 4 image with 3 gray levels (left part of the ¯gure), for

displacements d ¼ ð1; 0Þ and d ¼ ð1; 1Þ.

G. Thibault et al.
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The best classi¯cation submodel is provided by LR (neural networks gets com-

parable results). It is obtained with a matrix computed from 32 gray levels, for a

distance of 1 and summarized by 8 features: variance, correlation, average of sums,

entropy of sums, entropy, variance of di®erences, homogeneity and dissimilarity. The

submodel obtains 89.8% of prediction with [86.9, 92.7] as 95% con¯dence interval

and a probability lower than 10�4. However, the size of the con¯dence interval shows

that the submodel is sensitive to data: indeed excluded data alter performances. In

spite of the high concentration rates at both extremities (as can be seen in Fig. 8),

there are 40 ambiguous cases and 8 severe errors (errors with an extreme probability

of classi¯cation).

4.1.3. Gray level run length matrix

Based on higher-order statistical textural feature, the Gray Level Run Length Matrix

(RL) captures the coarseness of the texture.9,16 It consists in counting the number of

pixel segments with the same intensity (°at zone) in a given direction, then repre-

senting the results in a matrix. A direction (0�, 45�, 90� or 135�) and a number of

gray levels are chosen beforehand. The matrix element RL�;fðln; gnÞ is equal to the

number of segments of length ln and gray level gn of direction �. This implies that

the number of columns in the matrix is dynamic, as it is determined by the length of

the longest segment. By design, the calculation is symmetric and therefore, it is

unnecessary to consider the four complementary directions (180�, 225�, 270� or

315�). Figure 9 shows an example of the calculation of a run length matrix.

Once the matrix has been obtained, 11 indexes are calculated42,50 (moments of

order �2 to 2) to determine the vector that characterizes the texture. To establish

our model, the matrix is computed for a given gray level and for four directions.

Then, for each index, the average value of the four directions (RL0;f , RL45;f , RL90;f

Fig. 8. The probability distribution as given by the model. In light green (respectively dark green), the

nuclei with a homogeneous (respectively nonhomogeneous) texture. The nearer the probability to 1 (on the

x-axis), the more homogeneous the texture (color online).
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and RL135;f) is considered to avoid dependency on direction and to get a global view

of the texture information. A systematic study shows that the best model is obtained

for a set of 7 indexes and 32 gray levels. The classi¯cation success rate is 84.81% by

LR (and neural networks), which is inferior to the rate obtained with the COM

summarized by the Haralick's features (90%).

4.2. New method: Gray level size zone matrix

In our hands, homogeneous texture are composed of large °at zones of close gray

level, without (or really few) °at zones or segments in any given direction. In light of

this, we propose a new approach, which keeps track in a matrix of the size of each °at

zone. The resulting matrix is computed according to the run length matrix principle:

the value of the matrix element GSfðsn; gnÞ is equal to the number of °at zones of size

sn and of gray level gn. Figure 10 shows an example of the computation of such a

matrix, called the size zone matrix (SZM).

The resulting matrix has a ¯xed number of rows (equal to the number of gray

levels) and a dynamic number of columns (determined by the size of the largest °at

zone). The more homogeneous the texture, the wider and °atter the matrix. It must

be pointed out that this matrix does not require computations in several directions,

which are replaced by the labeling of connected components. However, it is still

necessary to specify the number of gray levels, but the calculations are subsequently

robust to noise. The 11 same indexes are computed the same way as the RL matrix

with 32 gray levels. The classi¯cation rate is 91.11% by LR (and neural networks)

with [89.1, 93.1] as the 95% con¯dence interval of and a probability lower than 10�4.

It is the best result obtained by the approaches used so far.

Fig. 9. Example of the computation of a run length matrix for a 4� 4 texture in the 0� direction for 4
gray levels.

Fig. 10. Example of the computation of a in 8-connexity for a 4� 4 texture in 4 gray levels.
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This improvement can be clearly seen by comparing Figs. 8 and 11(a). A better

distribution of the nuclei is visible at both extremities and a reduction of 16 am-

biguous cases (only 29 ambiguous cases remain). However, six severe errors remain.

These results demonstrate the e±ciency of the classi¯cation.

However, when examining the data, the indexes and the false positive results, it

becomes clear that a speci¯c texture case was not correctly characterized and was the

cause of the remaining errors: nuclei with large °at zones, but with high variations in

the intensity between °at zones [see Fig. 1(c)], making them inhomogeneously tex-

tured nuclei.

To characterize these nuclei types, two new indexes, which are the weighted

variances of gray level or area size, are considered:

�NðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � S
XN
gn¼1

XS
sn¼1

ðgn � GSfðgn; snÞ � �NÞ2
vuut

�N ¼ 1

N � S
XN
gn¼1

XS
sn¼1

gn � GSfðgn; snÞ;

�SðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � S
XN
gn¼1

XS
sn¼1

ðsn � GSfðgn; snÞ � �SÞ2
vuut

�S ¼ 1

N � S
XN
gn¼1

XS
sn¼1

sn � GSfðgn; snÞ;

(a) (b)

Fig. 11. Probability distribution as given by the models: (a) simple size zone matrix, (b) size zone matrix
with the new indexes. In light green (respectively dark green), the nuclei with homogeneous (respectively

nonhomogeneous) texture. The nearer the probability to 1 (respectively 0), the more homogeneous (re-

spectively nonhomogeneous) the nuclei's texture.
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where N and S are the dimensions of the matrix. The more the texture is made of

large °at zones with high intensity variations between them, the higher the value of

the index �N . In the case of a more homogeneous texture, the value of this index will

be low. It is also true for the index �S , when dealing with °at zones sizes.

In this way, two new texture indexes are added to the 11 previous ones, making a

total of 13 indexes. A systematic study was once again undertaken. This study

indicates that the best subset is composed of 12 indexes (only the LRHGLE index

discarded) on images reduced to 32 gray levels and classi¯ed by LR (see Fig. 12) or

neural networks (with � ¼ 2). Thanks to this new set of indexes, the classi¯cation

rate of 94.07% has been reached, with a con¯dence interval of [92.1, 95.9] and a

probability lower than 10�4. The use of our indexes improves the submodel's pre-

diction rate by 3%.

However, there is an intersection between this con¯dence interval and the pre-

vious (without our indexes �N and �S). In fact, the probability of the previous

submodel to give comparable results to the new submodel is lower than 0.087

(determined by a study of the rank). Moreover, an analysis of variance (Wilcoxon's

test49), proves that the probability of these distributions arising from the same law

is lower than 10�4. Then our indexes are relevant, necessary and e±cient in the

submodel.

The improvement provided by our indexes can be observed in Fig. 11(b). The high

concentration rate of probabilities at both extremities of the histogram shows the

e±ciency of the classi¯cation and the relevance of the choice of indexes. Moreover, we

can observe a higher concentration rate at both extremities and a drop-o® in the

presence of ambiguous cases (only 16 nuclei remain ambiguous).

A new and all-around recently published method (WND-CHARM),35 o®er the

occasion to evaluate the models of classi¯cation presented above. WND-CHARM

extracts 2700 characteristics of shape (10%) and texture (90%). Next, the best subset

of characteristics is selected together with a weighting of the selected characteristics.

Finally, a classi¯cation based on NN is realized.

Fig. 12. Comparison of the performance of di®erent classi¯cation methods with respect to the number of

indexes used: nearest neighbor (NN withNi þ 13), logistic regression (RL), random forests (FA) and MLP

with � ¼ 2.
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We have used this method on the subproblem of texture classi¯cation, because it

uses a large range of texture characteristics that allows comparison of the e±ciency of

our approach. The best con¯guration of this method (using 10% of the most perti-

nent characteristics) provides a classi¯cation rate of 90%. It is a result similar to the

one obtained with Haralick's features, which are used in the method.

This last result demonstrates the relevance and the e±ciency of our technique

(SZM) in the subproblem of texture classi¯cation.

5. Conclusion

In this paper, the problem of cell nuclei classi¯cation by the analysis of their shapes

and textures has been addressed and separated into two steps: the ¯rst step is based

on the study of the shapes, with the design of four new dedicated shape indexes,

particularly pertinent and e±cient according to the gain of performances obtained.

Although these indexes were especially designed for this problem, they can be used to

characterize all types of cells, and more generally ellipsoidal and convex shapes. In

the second step, a novel statistical method of texture characterization has been

presented: it consists in the computation of a representative matrix for the texture,

whose e±ciency has been compared to another techniques, and more particularly to

one that uses a very large range of texture characteristics. The gap of performance

was signi¯cant.

On both steps of shape and texture classi¯cation, the submodels built were sys-

tematically validated by cross validation, the con¯dence interval and the probability

were computed. All these information have proven the reliability of submodels.

To build the ¯nal classi¯cation model, we use the LR (a neural network provides

comparable results) in order to classify nuclei according to their probabilities of

classi¯cation (given by the shape and texture submodels). We obtain a classi¯cation

percentage of 87.8%, which is lower than the classi¯cation percentage of both

submodels. This is due to the fact that the majority of nuclei with nonhomogeneous

texture (approximately 100 on 135) have a pu®y shape. The texture classi¯cation is

thus highly correlated with shape classi¯cation. Moreover, only 94% of the nuclei

can be diagnosed by shape and/or texture. There remain 6% of the nuclei that can

be diagnosed only with rare information, which occurs occasionally. Furthermore,

we have used the WND-CHARM algorithm on the ¯nal problem. This method was

able to classify only 71% of the nuclei, whereas we achieved 88% out of the 94%

possible.

In the paper, we have described the di®erent steps necessary to construct an

automatic classi¯cation model of cell nuclei of patients a®ected by the Progeria

disease. It is now possible to classify cell nuclei automatically, reliably and quickly.

The aims of this work were automation, stability and time saving (in comparison

with time necessary to a manual classi¯cation by experts and its ratio of repeat-

ability), and they have been achieved. Moreover, our work demonstrates the feasi-

bility of classifying cell nuclei by the study of lamins A/C repartition.
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In addition, abnormalities in nucleus shape or texture appeared to be a frequent

morphological parameter in several human diseases, one of them being cancer.

Therefore, the present work will provide a new automatic tool to analyze a large

number of nuclei from diseased cells after the detection of di®erent nuclear proteins,

being either nuclear skeletal proteins such as lamins A, B and C or more \soluble"

proteins involved in several aspects of nuclear metabolism (DNA replication or re-

pair, RNA transcription and splicing).

List of measures and shape indexes used in this paper

Extension by diameter ED=D 2 ½0; 1�
Extension by radius 	i=	e 2 ½0; 1�
Extension geodesic 4A=ð�D2

GÞ 2 ½0; �4�
Circularity Rmin=Rmax 2 ½0; 1�
Convexity by perimeter P ðCHÞ=P 2�0; 1�
Convexity by surface A=AðCHÞ 2�0; 1�
De¯cit �ð	e � 	iÞ2=P 2 2 ½0; �2

16 �
Iso-perimetric de¯cit 4�A=P 2 2 ½0; 1�
Gap inscribed disk �	2

i =A 2 ½0; 1�
Spreading of Morton 4A=ð�L2

MAÞ 2 ½0; 1�
Irregularity ðAþ

ffiffiffi
�

p
maxp2Fdðp;BÞÞ=

ffiffiffiffi
A

p

Symmetry of Bezicovitch maxp2F AðF
T
SymmetricpðF ÞÞ

Circularity of variance 1
jRimðF Þj� 2

R

P
p2RimðF Þ ðjjp� Bjj � �rÞ2

with :

A surface.

B barycenter.

CH convex hull.

D diameter.

DG geodesic diameter.

ED thickness from diameter.

LMA length of the main axis and respectively.

LSA the length of the secondary axis (orthogonal to main axis).

P perimeter.

	e radius of the smallest circumscribed sphere.

	i radius of the largest inscribed sphere.

Rmin shortest radius.

Rmax longest radius.

�r average radius.
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