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Abstract. This paper presents the initial demonstration that changes
in 3D texture features of dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) based parametric maps in the early phase of neoad-
juvant (preoperative) chemotherapy (NAC) can be effective predictors
of eventual breast cancer residual cancer burden (RCB) score, and thus,
pathologic response to NAC. The use of powerful 3D statistical matrices
produced high RCB score correlations and allowed automatic determi-
nation of parametric maps whose feature changes are most likely to be
useful for predicting tumor therapy response.

1 Introduction

Approximately 290, 000 new breast cancer cases will be diagnosed in USA alone
in 2015 [1]. An estimated one in eight women (12%) will be diagnosed with
breast cancer during their lifetime, making breast cancer the second most com-
mon cancer among women, and the second leading cause of cancer-related death.
There are evidences indicating that the earlier the detection, treatment and fol-
low up, the better the disease-free survival (DFS) rate [2]. Recently it has been
reported [3] reported that MRI can detect breast cancer that is missed by other
techniques (X-ray mammography, clinical examination, ultra-sounds, etc.). Con-
sequently, the American Cancer Society published guidelines for breast cancer
screening in high risk population with MRI as an adjunct, because DCE-MRI
has been shown to have 85% to 100% sensitivity and 35% to 85% specificity for
tumor detection [4]. DCE-MRI detects angiogenesis and provides high resolution
4D imaging of the entire breast, allowing to: (a) show variations in contrast that
provide information about the tissue vascularity (poorly formed high density of
blood vessels are sign of malignant tumors [3]), (b) visualize the 3D inner tu-
mor texture (increased heterogeneity in malignant tumors), and (c) distinguish
between tumor types. These features make the DCE-MRI an in vivo virtual
biopsy, ideal for detecting, visualizing and characterizing the tumors and its
changes during different treatments, and finally to assess the tumor response to
treatment [5, 6].



For patients with locally advanced breast cancer (LABC), NAC has been estab-
lished as a standard of care. In patients with inoperable LABC, NAC has been
shown to improve both DFS and overall survival [7]. Patients with operable tu-
mors may also choose to receive NAC. Together with radiation therapy, NAC
facilitates breast conservation surgery and leads to overall survival and DFS
rates similar to those obtained by mastectomy [8, 9]. Unfortunately, patients un-
dergoing NAC do not always respond. Early identification (after the first NAC
cycle) of non-responders (NRs) can make it possible to spare them from inef-
fective and/or toxic treatments, allow quick adoption of alternative treatment
regimen, improve clinical management, and better patient stratification for trials
of novel therapies.
In order to assess and predict tumor response to NAC using noninvasive DCE-
MRI method, automatic methods have been developed, which typically consist of
two modules: i) extraction of quantitative features (surrogate imaging biomark-
ers) from various DCE-MRI parametric maps (detailed in section 2), and ii) a
classification by combining the extracted features to build a prediction model.
Early DCE-MRI studies focused on changes in tumor size tumor size, volume,
and morphology (longest diameters) to evaluate treatment response. Unfortu-
nately, for most patients the tumor size shrinks after at least 2 NAC cycles [10],
making it unsuitable for early prediction. More recently, studies have focused on
measuring and tracking changes in pharmacokinetics features1 captured through
quantitative pharmacokinetic modeling of DCE-MRI time-course data [11]. How-
ever, not all studies have shown that quantitative DCE-MRI provides results su-
perior to those obtained by the simple volume changes [6]. Moreover, measuring
changes in pharmacokinetic parameters cannot capture the spatial tissue het-
erogeneity, and therefore discards a significant amount of valuable information.
Recently, Teruel et al. [12] have presented a detailed analysis of 16 textural sta-
tistical features capable of predicting early tumor response to NAC, and pointed
out three promising features. Unfortunately, this study uses a 2D statistical tex-
ture description and then does not take advantage of all the 3D information
provided by the 3D nature of breast DCE-MRI data acquisition.
In this paper, we investigate the predictive value of 3D statistical texture features
for early prediction of breast cancer response to NAC using DCE-MRI pharma-
cokinetic parametric map (Section 2). These statistical features have been widely
used for texture analysis. We extract these texture features in 3D in order to take
advantage of all the available information. With these features, we seek to pre-
dict the residual cancer burden (RCB) score measured pathologically from the
surgical specimens [15]. The RCB score provides the extent of residual disease
after NAC completion. For example, a RCB score of 0 means a patient achieving
pathologic complete response (pCR), and the higher the RCB value, the more
severe the residual disease. The following sections present DCE-MRI data collec-
tion and analysis (Section 2), a brief description of the extracted texture features
(Section 3), and then the results (Section 4).

1 Dynamic variation of textural features of tumors at each time point during contrast
material uptake, and then plotted as a time function



2 Breast DCE-MRI Data Collection and Analysis

Twenty eight women with LABC who underwent 6 − 8 NAC cycles as stan-
dard of care consented to research DCE-MRI studies performed at Visit 1 (V1)
- before NAC, V2 - after first NAC cycle, V3 at NAC midpoint, and V4 - after
NAC completion but before surgery. Axial bilateral DCE-MRI images with fat-
saturation and full breast coverage were acquired with a 3D gradient echo-based
TWIST sequence using a 3T Siemens scanner. DCE-MRI acquisition parame-
ters included 10◦ flip angle, 2.9/6.2 ms TE/TR, a parallel imaging acceleration
factor of two, 30-34 cm FOV, 320×320 in-plane matrix size, and 1.4 mm slice
thickness. The total acquisition time was 1̃0 minutes for 32-34 image volume sets
with 18-20 seconds temporal resolution. Gadolinium contrast agent (Prohance)
IV injection (0.1 mmol/kg at 2 mL/s) was timed to start following acquisitions
of two baseline image volumes. Tumor region of interest (ROIs) were drawn
by experienced radiologists using post contrast DCE images. The pixel-by-pixel
(within the ROI) DCE time-course data were subjected to both the SM (Stan-
dard Tofts Model [13]) and SSM (Shutter-Speed Model [14]) pharmacokinetic
analyses to obtain tumor parametric maps (see figure 1) ofKtrans (contrast agent
transfer rate constant), ve (extravascular and extracellular volume fraction), kep
(= Ktrans/ve, contrast agent intravasation rate constant), τi (mean intracellu-
lar water lifetime, SSM only), and ∆Ktrans = Ktrans(SSM) − Ktrans(SM).
∆Ktrans is a measure of water exchange effects on Ktrans quantification as the
SSM takes into account while the SM ignores the effects of intercompartmental
water exchange kinetics. For each patient pathologic response to NAC and RCB
score were determined by pathological analysis of post-therapy resection speci-
mens and comparison with pre-therapy core biopsy specimens using previously
published methods [15]. A total of 5 patients were pCRs, while the others were
non-pCRs with a RCB range of 0.433− 3.707.

3 Characterization: 3D Statistical Matrices

Let f :

{
E → T
x 7→ f(x)

be a gray-levels image of dimension w× h, where E ⊂ Z2 is

the pixels support space and the image intensities are discrete values which range
in a closed set T = {t1, t2, ..., tN}, ∆t = ti+1 − ti, e.g., for a 8 bits image t1 = 1,
N = 256 and ∆t = 1. Assume that the image f is segmented into its J flat zones
Rj [f ] (i.e., connected regions of constant value): E = ∪Jj=1Rj [f ], ∩Jj=1Rj [f ] = ∅.
Each region size (surface area) is s(j) = |Rj [f ]| (|.| is the cardinal). Hence, we
consider that each zone Rj [f ] has an associated constant gray-level intensity.

Statistical matrices have been extensively used in texture characterization.
The best-known of which is the gray level Co-Occurrence Matrix (GLCM), often
used with Haralick’s features [16]. The GLCM represents the texture by the
second order statistics: co-occurring values distribution at a given offset. In 2D



∆Ktrans Ktrans(SM) Ktrans(SSM)

kep(SM) kep(SSM) τi

Fig. 1. Examples of parametric maps.

and for an offset ∆ = (∆x, ∆y), the GLCM is defined as:

GLCMf,∆(i, j) =

w∑
x=1

h∑
y=1

{
1, if f(x, y) = i and f(x+∆x, y +∆y) = j
0, otherwise

By design, the GLCM is dependent on the offset and therefore is not rotation
invariant (see figure 2 a). This is addressed by computing GLCM in four dif-
ferent directions: θ0◦ = (0, 1), θ45◦ = (1, 1), θ90◦ = (1, 0) and θ135◦ = (−1, 1).
The amount of information extracted depends on the number of offset directions
and distances. Typically, a large number of offsets are needed to extract all the
useful information and this is the main drawback of this approach.
Another classical technique is the gray level Run Length Matrix (RLM) [17],
which has been extensively developed for texture classification. The RLM ex-
tracts higher order statistical features: the matrix element RLMf,θ(g, l) gives
the gray level g and length l runs (i.e., collinear pixels with the same intensity
in the direction θ) total number (see figure 2 c). This method is particularly
effective for periodic textures and completes the information provided by the
GLCM. Extracted features from the RLM are moments of order from −2 to 2.
As GLCM, RLM requires computation in many directions in order to achieve
the rotation invariance.
Recently Thibault et al. [18, 19] introduced the gray level Size Zone Matrix
(SZM) original notion, as an alternative to the joint RLM distribution. The
SZM is based on each flat zone size/intensity co-occurrences, so provides a sta-
tistical representation by the bivariate conditional probability density function
estimation of the image distribution values. In this method, the matrix value



SZMf (s, g) is equal to the size zones s and gray level g total number in f (see
figure 2 d). In this matrix, the more homogeneous the texture (large flat zones
with closed gray levels), the wider and flatter the matrix. From this statistical
matrix representation, we can calculate all the second-order moments as compact
texture features [17], plus two features which are specific weighted variances [18].
This matrix is not dependent on a given parameter (contrary to both GLCM
and RLM which are respectively dependent of the offset ∆ and the orientation
θ), so does not require computation in several directions, and thus is rotation
and translation invariant. However it requires a flat zone labeling which is time
consuming. The connectivity type used for labeling modifies the matrix but does
not impact the classification performances [19].

Remark RLM and GLCM are appropriate for periodic textures whereas
the SZM is typically adapted to describe heterogeneous non periodic textures.
In addition, due to the intrinsic segmentation, texture description in SZM is
more regional than the point-wise-based GLCM representation. But by design
all these matrices are sensitive to noise. Indeed, a pixel gray level variation
of ∆v, involves: a different increment located at a distance ∆v in the GLCM;
potentially a shorter run (because cut), plus a singleton (run of length 1) and
a new run (cut run remaining part), in the RLM; a singleton (flat zone of size
1) and a zone reduced of 1 for the SZM. In order to improve statistical matrices
noise robustness, the texture gray levels number is reduced before matrix filling.
Different methods exist to reduce the gray levels number to N possible values,
and the most commonly used approaches are:

– the application of a linear or nonlinear function. For this method, a histogram
spreading is first performed, and then a function is applied. Most of the time
the function is linear (so a simple division is performed), but a log or other
functions can be used.

– the generation of a cumulated histogram in order to separate the pixels
distribution into N bins containing approximately the same pixels number.

– the application of a clustering algorithm with N clusters.

The classification performances can be very sensitive to the algorithm used, so
it is generally recommended to test some or all of them, with different gray level
quantizations.

4 Method and Results

In order to evaluate the feasibility of texture analysis for early prediction of
tumor response to NAC, we focus on the differences between V1 (before NAC)
and V2 (after the first NAC cycle). Consequently at V1 and V2, each paramet-
ric map is characterized with the statistical features described above, computed
using two gray level reduction algorithms (linear and histogram) and five gray
level quantization (dyadic values from 8 to 256), which generates hundreds of
features. Due to the relatively small sample size (a cohort of 28 tumors), using
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1 3 4 4

3 2 2 2
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Cooccurrences
g\g 1 2 3 4

1 0 1 1 2
2 1 4 2 0
3 1 2 0 2
4 2 0 2 2

Run length
g\l 1 2 3

1 4 0 0
2 1 0 1
3 3 0 0
4 3 1 0

Size zone
g\s 1 2 3

1 2 1 0
2 1 0 1
3 0 0 1
4 2 0 1

(a) (b) (c) (d)

Fig. 2. Matrices filling example for a 4× 4 texture with 4 gray levels (a), GLCM with
∆ = (1, 0) (b), RLM with θ = 0◦ (c), and SZM (d).

all the features simultaneously to train a classifier will likely lead to overfitting.
Consequently, we only use three features at a time, selected from the same fea-
tures pool and parametric map (see algorithm 1). Then we generate a prediction
model with linear regression (LR) and leave-one-out protocol (LOO) using the
triple features. Finally each model is validated using three different correlations
measures: Pearson (linear), Spearman (rank) and Kendall (rank).

Data: Let F IVi,Pk
the Ith feature extracted at Vi on the Pk map.

foreach parametric map Pk do
foreach set of features S extracted from Pk do

foreach triplet of features (F I1Vi,Pk,
, F I2Vi,Pk

, F I3Vi,Pk
) ∈ S do

F1 ← F I1V1,Pk
− F I1V2,Pk

;

F2 ← F I2V1,Pk
− F I2V2,Pk

;

F3 ← F I3V1,Pk
− F I3V2,Pk

;

RCBpred ← LR(F1, F2, F3) + LOO ;
Correlations computation between RCBpred and RCB ;

Algorithm 1: Prediction models elaboration.

By applying the algorithm 1, we have generated and tested approximately
140, 000 prediction models. Among them, 779 models have strong correlations,
i.e. all three correlation measures are greater than 0.7. The Figure 3abc shows
the correlation scores distribution among all good models. We can observe that
the median/average correlations for Pearson, Spearman and Kendall are approxi-
mately 0.8, 0.89 and 0.72 respectively. These high values demonstrate the models
efficacy to predict the RCB score after only one NAC cycle, using only three sta-
tistical texture features at a time. The first distribution (Pearson) shows that
all the models predictions are linearly correlated with the RCB scores, which is
difficult to achieve using a simple linear regression. These results are confirmed
by the Spearman correlations distribution, which are around 0.9, and therefore
demonstrates the models predictions consistency with the RCB scores. Figure
3d lists for each of the three texture analysis methods the parameter map with
the highest correlation coefficients.
Half of the models were built using the GLCM, but we can observe on figure



3d that each statistical matrix can generate at least one highly efficient models
with all correlations around 0.9. An other interesting result is the distribution
of the parametric map used to generates the prediction models. We can observe
on figure 3e that 80% of the models were generated using the SSM parametric
maps.

(a) Pearson (b) Spearman (c) Kendall

Method Map Pearson Spearman Kendall
COM kep(SM) 0.97 0.88 0.9
SZM Ktrans(SSM) 0.92 0.9 0.8
RLM Ktrans(SSM) 0.97 0.75 0.9

(d) Best models (e) Parametric maps

Fig. 3. The correlation scores (a-c) and parametric maps (e) distribution among all
good models, and the best correlation scores for each statistical matrix (d).

5 Conclusions and Perspectives

This paper presents the initial result in using 3D characterization of DCE-MRI
heterogeneity imaging biomarker of LABC tumors for early prediction of breast
tumor response to NAC. The texture features were used with a linear regression
in order to build prediction models. A total of 779 models have high correlations
and can predict the RCB score. These results are promising and suggest that it
is possible to predict the eventual RCB score using quantitative imaging features
at baseline and after the first NAC cycle. Moreover, the results indicate that the
SSM parametric maps seem to be more sensitive to therapy induced tumoral
biological changes and thus provide better prediction of therapy response than
the SM counterparts. Therefore, the SSM may be the pharmacokinetic model of
choice for quantitative analysis of DCE-MRI data.
Our initial results need to be validated with a larger dataset in order to study
response of various breast cancer molecular subtypes with statistical significance,
and prevent overfitting. Moreover, we will estimate the predictive ability of each
feature in order to fine tune a features selection algorithm and build better
models, using non linear regression methods as neural networks, random forests
and support vectors machine.
Acknowledgements: this work was supported by the NIH U01 CA154602 and
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