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ABSTRACT

This paper presents significant improvements of Gray Level
Size Zone Matrix (GLSZM) which is a bivariate statistical
representation of texture, based on the co-occurrences of
size/intensity of each flat zone (connected pixels of the same
gray level). The first improvement is a multi-scale extension
of the matrix which merges various quantizations of gray
levels. A second alternative is proposed to take into account
radial distribution of zone intensities. The third variant is a
generalization of the matrix structure which allows to analyze
fibrous textures, by changing the pair intensity/size for the
pair length/orientation of each region. The interest of these
improved descriptors is illustrated by texture classification
problems arising from quantitative cell biology.

Index Terms— Texture Characterization, Structural Sta-
tistical Matrices, Gray Level Size Zone Matrix (GLSZM).

1. INTRODUCTION

Texture characterization and classification [1] is one of the
fundamental task in low-level computer vision. Two main
families of approaches appear highlighted in the state-of-
the-art: based on statistical analysis [2, 3, 4] and based on
wavelets descriptors [5].

Our starting point is the original notion of Gray Level
Size Zone Matrix (GLSZM), based on the co-occurrences of
size/intensity of each flat zone (connected pixels of the same
gray level), which was introduced recently in [6] as an al-
ternative to the joint gray level-run length distribution [3, 4].
More precisely, the aim of this paper is to offer some alter-
native bivariate statistical representations of texture. The first
improvement, discussed in Section 2, is a multi-scale exten-
sion of the matrix which merges various quantizations of gray
levels and which avoids selecting the optimal quantization. A
second alternative is proposed in Section 3 to take radial dis-
tribution of zone intensities into account. The third variant,
studied in Section 4 is a generalization of the matrix structure
which allows to analyze fibrous textures, by changing the pair
intensity/size for the pair length/orientation of each region.
The interest of these improved descriptors is illustrated by

texture classification problems arising from quantitative cell
biology in section 5.

2. MULTIPLE GRAY LEVEL SIZE ZONE MATRIX

Let f(x) : E → T be a gray-level image, where E ⊂ Z2 is
the space pixels x ∈ E and the image intensities are discrete
values which range in a closed set T = {t1, t2, ..., tN}, ∆t =
ti+1 − ti, e.g., for a 8 bits image we have t1 = 1, N = 256
and ∆t = 1. Let us assume also that image f is segmented
into its J flat zones (i.e., connected regions of constant value):
E = ∪Jj=1Rj [f ], ∩Jj=1Rj [f ] = ∅. The size (surface area) of
each region is s(j) = |Rj [f ]|. Hence, we consider that each
zoneRj [f ] has associated a constant gray-level intensity g(j).

2.1. Reminder on Gray Level Size Zone Matrix (GLSZM)

The GLSZM of a texture image f , denoted GSf (sn, gm),
provides a statistical representation by the estimation of a bi-
variate conditional probability density function of the image
distribution values. It is calculated according to the pioneer-
ing Run Length Matrix principle [3]: the value of the matrix
GSf (sn, gm) is equal to the number of zones of size sn and
of gray level gm. The resulting matrix has a fixed number
of lines equal to N , the number of gray levels, and a dynamic
number of columns, determined by the size of the largest zone
as well as the size quantization. The more homogeneous the
texture, the wider and flatter the matrix. More precisely, we
can calculate all the second-order moments of GSf (sn, gm)
as compact texture features [4]. Figure 1 shows an example
of the calculation of such a matrix.
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Fig. 1. Example of the GLSZM filling for an image texture of
size 4× 4 with 4 gray levels.



This matrix does not require calculations in several di-
rections, contrary to Run Length Matrix (RLM) [3] and Co-
occurrences Matrix (COM) [7]. RLM and COM are appro-
priate for periodic textures whereas the GLSZM is typically
adapted to describe heterogeneous non periodic textures. In
addition, due to the intrinsic segmentation, texture description
in GLSZM is more regional than the point-wise-based repre-
sentation of COM. However, it has been empirically proved
that the degree of gray level quantization still has an impor-
tant impact on the texture classification performance. For a
general application it is usually required to test several gray
level quantization in order to find the optimal one with respect
to a training dataset.

2.2. Multiple gray level quantization of GLSZM

Instead of optimizing the number of gray levels N , we pro-
pose to construct a multiple scheme with various matrices and
then to combine them into a single matrix. The principle of
the Multi Gray Level Size Zone Matrix (MGLSZM), for an
image of 8 bits, is to calculate 8 GLSZM for 8 different num-
bers of gray levels: Nk = 2k, k = 1, 2, ..., 8, and to merge
the resulting matrices by a weighted average:

G̃Sf (sn, gm) =
1∑
k wk

8∑
k=1

wkGSNk

f (sn, gm)

where GSNk

f (sn, gm) is the GLSZM of image f calculated
from T quantized in Nk gray levels. Weights distribution in
MGLSZM is given by a gaussian function centered between
N4 = 16 and N5 = 32 gray levels: this distribution penalizes
extreme values of the number of gray levels because low
levels contain limited structural information and high levels
are sensitive to noise. By the way, the weights could be auto-
matically learnt or adapted a priori for a specific application.
For different values of Nk, the matrices GSNk

f (sn, gm) have
different dimensions. Even if we consider that the size of
regions is quantized in the same intervals (same number of
columns), the number of rows is equal to Nk. To solve this
drawback, we propose to replicate each of the Nk rows in
order to finally obtain 256 rows.

The different gray-level quantization can also be inter-
preted as a segmentation into λ-flat zones [8], where the value
of λ is associated to the corresponding ∆t = 256/Nk. From a
computational viewpoint, the multiple GLSZM G̃Sf (sn, gm)
requires to fill 8 individual GLSZM, but it is generally more
efficient for texture classification (see application Section 5).

3. GRAY LEVEL DISTANCE-TO-BORDER ZONE
MATRIX

Texture in natural objects is often non stationary in the space;
for instance, the texture can vary radially with respect to the

center of the object. Such is the case in one of the applica-
tions considered in Section 5. We have to characterize the
DNA organization (i.e., chromatin texture) in cell nuclei, see
Fig. 5. More precisely, the ”quantity of DNA” is represented
by the intensity of the pixel (i.e., the higher the pixel gray
level, the higher quantity of DNA). As we observe from the
examples, the distribution of DNA is not stationary and, for
some classes, it is usually closer to the center of the nuclei.
Then, in order to characterize such radial textures, we pro-
pose a descriptor named Gray Level Distance-to-border Zone
Matrix (GLDZM), denoted GDNk

f (dn, gm). The new statis-
tical matrix yields the number of zones of intensity gm at a
distance of dn from the border of support space Ec (shortest
Euclidean distance, see example of Fig. 2).
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Fig. 2. Example of a texture with four gray levels, where each
flat zone is valued with 4-connectivity distance to the border
Ec (in white) (a) and the resulting GLDZM (b).

In practice, to accelerate computation time, the distance
function is computed for the whole support space of the tex-
ture: D(x, E) = inf{d(x,y), y ∈ Ec}, where d(x,y) is
typically obtained using a discrete metric approximation to
the Euclidean distance. Then, for each region Rj [f ], the cor-
responding value of distance is obtained as its smallest value
in the distance map: dj = inf{D(z, E), z ∈ Rj [f ]}. It is ob-
vious how to generalize this matrix to construct a Multi Gray
Level Distance-to-border Zone Matrix G̃Df (sn, dm).

4. ORIENTATION LENGTH ZONE MATRIX

The GLSZM and GLDZM are statistical descriptors which
assume that the texture is composed of a random non periodic
tiling of homogeneous zones, each one being described by its
intensity value and its size/distance-to-border. This principle,
which is appropriate to describe intensity-dependent homoge-
neous vs. heterogeneous textures [6], is not compatible with
other kinds of more structured textures; in particular, with
fibrous textures. Let us consider the example of microtubule
network given in Fig. 3(a), which is another case studied in
Section 5. Similar texture images can be found in other natu-
ral objects such as wood, carbon, wool, etc. On the one hand,
we observe that the intensity of the fiber is not an important
feature. Fibers can mainly be described by their length, width
variation, orientation and tortuosity [9]. We assume here
that our fibrous texture is a random network of thin fibers



of limited width variation and low tortuosity. On the other
hand, the flat zone segmentation of fibrous textures is without
interest for construction descriptors which characterize the
morphological properties of the fiber network.

Hence we offer to use the Local Radon Transform (LRT),
as discussed in [10], to segment the individual fibers. The
LRT uses an orientated Gaussian derivative kernel, which is
rotated at different angles and adapts via a maximization pro-
cedure to the various directions of the texture (see Fig. 3).
Now, the computation of connected flat zones (two neigh-
boring points belong to the same zone if they have the same
value of dominant orientation) produces a segmentation of the
network in J linear segments which roughly represent each
fiber, but which do not cover the whole support space, i.e.,
∪Jj=1Fj [f ] 6= E; in addition, in the crossing points of fibers
one of the orientations is arbitrary favored over the others. We
have solved this last drawback by considering separately the
connected components of each orientation and by reconnect-
ing them by a small morphological closing. Once the segmen-
tation of individual fibers is available, each fiber Fj [f ] can be
described by its length lj (computed as its geodesic diame-
ter) and by its orientation θj . Using these two parameters, we
propose to characterize a fibrous texture f by a new statisti-
cal matrix named Orientation Length Zone Matrix (OLZM),
OLf (θn, lm), which yields the number of ”fibers” of orienta-
tion θn and length lm. The number of rows of OLZM depends
on the degree of discretization of the orientation space (which
is selected in the computation of the LRT) and the number of
columns equal to the longest fiber of the texture.

(a) (b) (c)

Fig. 3. The original microtubule network (a); an enhanced
network image (with LRT) giving at each pixel x the value of
the image processed with kernel orientated at angle θi which
produces the maximal intensity (b); an orientation map gi-
ving, at each x, the corresponding maximal response θi re-
presented by a different color label (c).

To deal with the problem of rotation invariance, we offer
the following alternative solutions. If the texture f is a se-
gmented object, for instance a cell such as in our case study,
the orientation of each zone is given with respect to the coor-
dinate system associated to the main axis of the object (com-
puted by PCA). If the texture f is not bounded in the image,
the main axis can be replaced by the average of orientations
of all the zones which compose the texture.

5. APPLICATION TO CELL CLASSIFICATION IN
CELL DIVISION ASSAYS

The development of the present texture descriptors was mo-
tivated by an application in cell-based assays for phenotypic
screening, which consists in the use of multi-parametric and
high resolution imaging techniques to characterize and select
innovative compounds and/or protein targets involved in cell
division. More precisely, the aim is to build a cell phase clas-
sifier by the analysis of the DNA structure (using a marker of
the nuclear chromatin) and the organization of microtubule
network (using a marker of the cytoskeleton).
We dispose of a set composed by 317 cells which are labelled
by experts: as interphase or phase of the mitosis and approxi-
mately 50 other labels that provides relevant information for
phase classification. To elaborate classification models, we
realize One Class Classifiers for each class with logistic re-
gression and validation by Leave One Out (k-fold validation
with k equal to the number of instances).

Among these labels, we focus here on:

1. Texture Homogeneity of the DNA, which contains two
classes Homogeneous and Heterogeneous. Fig. 4
shows that MGLSZM provides comparable result to
the best original GLSZM. This property can be ob-
served too on Fig. 5 for radial distribution. These
results demonstrate the power and usefulness of such
multiple gray level version.

Matrix Prediction
GS8f (sn, gm) 89, 3

GS16f (sn, gm) 91, 1

GS32f (sn, gm) 92, 7

GS64f (sn, gm) 91, 6

G̃Sf (sn, gm) 92, 7

Fig. 4. Examples of homogeneous texture (top left) vs.
heterogeneous texture (bottom left) nuclei; and results of
homogeneity classification using second-order moments of
GLZSM.

2. Masses Texture of the DNA, which is the ”distribution”
of DNA and contains four classes (Beads, Slightly
Condensed, Condensed and Highly Condensed). Fig.
5 shows that (M)GLDZM provides a better description
of radial distribution than MGLSZM.
However, there is an exception for class ”Beads”,
which is composed of texture without radial repartition
(so random or homogeneous texture). Thus MGLSZM
is well adapted and provides better results.



(a) (b) (c) (d)
Matrix Beads Slightly Condensed Highly

G̃Sf (sn, gm) 91, 3 88, 1 89, 75 92, 2
GD8

f (dn, gm) 85, 7 85, 8 86, 1 89, 1

GD16
f (dn, gm) 88, 1 87, 6 90, 75 95, 3

GD32
f (dn, gm) 86, 1 89 92 93

G̃Df (dn, gm) 89, 75 89 91, 9 95, 05

Fig. 5. Examples of nuclei with different texture (associated
here to the condensation of the chromatin): beads (a), slightly
(b), condensed (c), highly (d); and results of classification.

3. Network Organization of microtubules, which con-
tains three classes (Well Organized, ReOrganized and
Other). Fig. 6 shows really satisfying of OLZM. How-
ever, these results are slightly lower than previously due
to the organization similarity among texture classes.

(a) (b) (c)
Matrix Well Organized ReOrganized Other

ÕLf (dn, gm) 86, 1 77, 8 84, 9

Fig. 6. Examples of microtubule network normal/enhanced
with different organization: Well Organized (a), ReOrganized
(b), Other (c); and results of classification.

6. CONCLUSION AND PERSPECTIVES

In this paper, the problem of cell phase mitosis classification
is addressed. More precisely, we focus on specific and rele-
vant parts of cell characterization particularly difficult. To
figure these problems out, we design new advanced statistical
matrices based on Gray Level Size Zone Matrix. First a mul-
tiple gray level version which uses more information about
the texture, and next two new versions which use radial dis-
tribution, length and orientation of flat zones. These matrices
showed their power and efficiency and can be applied to other
problems of texture characterization.
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