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Abstract. Quantifying concentrations of target molecules near cellular
structures, within cells or tissues, requires identifying the gold particles
in immunogold labelled images. In this paper, we address the problem of
automatically detect them accurately and reliably across multiple scales
and in noisy conditions. For this purpose, we introduce a new contrast
filter, based on an adaptive version of the H-extrema algorithm. The
filtered images are simplified with a geodesic reconstruction to precisely
segment the candidates. Once the images are segmented, we extract clas-
sical features and then classify using the majority vote of multiple clas-
sifiers. We characterize our algorithm on a pilot data and present results
that demonstrate its effectiveness.
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1 Introduction

Immunogold staining (IGS) is a technique used in electron microscopy (EM) to
localize a molecule of interest – target molecule. This often achieved by attach-
ing a primary antibody to the molecule of interest, which is then linked to the
immunogold particle through a secondary antibody. After the gold particles are
attached to the target molecules in this manner, the specimen is imaged using
an electron microscope where the gold particles appear as “dark spots” due to
the high electron density (see image 1). The IGS allows indirect visualization of
target proteins and their approximate locations (the distance between primary
antibody and immunogold is in range 15 to 30nm). The immunogold particles
are extremely small and so the IGS is typically employed in studies where cells or
tissues are imaged at high resolution. The high resolution images in such studies
are manually tagged, which is a time consuming process.

In this paper, we describe a new scheme to automatically detect the immuno-
gold particles in high resolution images. We first explain the challenges in this
problem (section 2), and then describe a new adaptive version of H − extrema,
a mathematical morphology algorithm (section 3.1) for accurately detecting the
particles in all conditions. In Section 4, we evaluate our method empirically to
understand its capabilities and limitations and report results.
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2 Problem Description

Immunogold particles appear as dark spots under good imaging conditions. How-
ever, the acquired EM images vary significantly depending on conditions of im-
age acquisition, which are difficult to control precisely. These variations makes
it difficult to detect or locate the immunogold particles in the image. The most
common variation is the magnification of the EM images; figure 1 (left and mid-
dle) shows the same group of golds acquired with two different magnifications.
The change in magnification, not only impacts the scale of the objects in the
view, but also the shape and the intensity profile of the gold. Moreover, as shown
in Figure 1, the intensity of the image is effected by the presence of relatively
larger (dark) structures in the close neighborhood. Another factor that influ-
ences the quality of the image relates to noise or fuzziness, as shown in Figure 1
(right), arising from variations in specimen preparation, image acquisition, clus-
tering of particles in the same location and the nature of organic tissue. The
above mentioned variations can substantially affect the appearance of the gold
particles, making the task of automatic detection challenging.
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Fig. 1. Example of set of golds acquired at different magnifications (top left and mid-
dle), with different contrasts in the same original image (top middle and right), and
their corresponding intensity profiles along the red segments.

3 Our Approach

Let f :

{
E → T
x 7→ f(x)

be a gray-levels image, where E ⊂ Z2 is the support space

of pixels and the image intensities are discrete values which range in a closed
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set T = {t1, t2, ..., tN}, ∆t = ti+1 − ti, e.g., for a 8 bits image we have t1 = 1,
N = 256 and ∆t = 1. Let us assume also that image f is segmented into its
J flat zones Rj [f ] (i.e., connected regions of constant value): E = ∪Jj=1Rj [f ],

∩Jj=1Rj [f ] = ∅. The size (surface area) of each region is s(j) = |Rj [f ]| (|.| the
cardinal). Hence, we consider that each zone Rj [f ] has associated a constant
gray-level intensity g(j).

3.1 Review: H-extrema

H-extrema, a mathematical morphology algorithm [1, 2], is a powerful non-linear
filter to detect structures with certain intensity profile. The algorithm is com-
prised of two distinct algorithms – the h-minima and its dual operation the h-
maxima. The h-minima (resp. maxima) detects dark (resp. bright) patterns with
a intensity range of at least h. A constant h is added (resp. subtracted) to the
original image f . The new image with f+h (resp. f−h) is used in an over (resp.
under) geodesic reconstruction, OverRec(f, f + h) (resp. UnderRec(f, f − h)).
In effect, the algorithm erases all dark (resp. bright) patterns with an intensity
range lower than h, retaining all other structures (flat zone with a lower/higher
gray level value than its neighborhood), as illustrated in Figure 2(b). So each
local extremum in the resulting image corresponds to a local extremum in the
original image with at least a dynamic range of h.
The main inconvenience of h-extrema is the fixed value of h that is added to
or subtracted from the entire image. The fixed value doesn’t take into account
any local information, and hence it is not optimal for our task of gold detection.
Figures 2 (b and c) illustrate this weakness. Often, gold particles close to dark
areas are merged with the neighborhood, and thus erased.

3.2 Adaptive H-Extrema

We introduced a simple new adaptive version of h-extrema, which we refer to as
A-Extrema, where for each pixel we adapt the value of the additive parameter h
according to its neighborhood.

First a filter F is applied on the original image f , in order to get a new
simplified image Gf , smoothed and containing only (preferably) global varia-
tions. Next, in the case of a-minima, for each pixel x of f , the value added is
computed according to a function A and the corresponding value of x in Gf ,
A(Gf (x)). Finally the same over reconstruction is performed, as in h-minima.
The algorithm 1 enumerates all the steps:

Data: Image f , filter F , function A
Result: Result image Aminf
begin

Gf ← F(f) ;
Addf ← f +A(Gf ) ; [⇔ ∀x, Addf (x)← f(x) +A(Gf (x))] ;
Aminf ← OverRec(f,Addf ) ;

end
Algorithm 1: A-minima algorithm.
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In our application, we chose the filter F to be an alternate sequential filter (ASF,
alternation of openings and closings with structuring elements of increasing sizes
[1]) because it simplifies the image without being affected by small local patterns.
Moreover, ASF is known for its insensitivity to noise, which is useful in our
application. For the ASF, we use disk type as our structuring elements, whose
maximum radius equal to gold particles sizes so that we can erase them while
computing the global variations.

For the function A, we compute a percentage. Thus, in our adaptive algo-
rithm h is computed as a proportion of the global variation computed from the
neighborhood of each pixel according to F . Thus by design, in dark areas a low
h value is employed, whereas a high h value is employed in bright areas.

(a) (b) (c)

(d) (e) (f)

Fig. 2. The original image (a) and the various processes: the 43-minima result (b) and
its local minima in white (c), the ASF result (d), the a-minima result for 43% of the
ASF (e) and its local minima in white (f).

The image 2 e shows the A-minima result. The percentage for the function A
needs to be computed empirically. In our example, we collected the statistics of
contrasts in gold particles and found that the dynamic range was at least 43%.
This is compared with h-minima results using the optimal value, h = 43. The
figure illustrates the advantage of our A −minima algorithm, which preserves
gold particles with higher fidelity in both bright areas with high contrast and
dark areas with low contrast. Thus, the combination of the filter F and the
function A is effective in preserving the gold particles under different image
contrasts.
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Remarks:

– We preferred the ASF to classical mean or Gaussian filters, because it is not
affected by noise and small artifacts.

– This new adaptive method can be adapted for the dual operation, A-maxima,
to detect peaks.

– The function A can be generalized to larger class of functions. For example,
in case of the detection of dark patterns in sub-exposed images, A can be
modified as Addf ← f + Invert(Gf )× p to be more effective.

3.3 Detection of Gold Particles

The A-minima preserves the sufficiently contrasted dark patterns and removes
all other patterns with a lower contrast, thus provides a simplified image Aminf .
On the image Aminf , we apply a new ASF in order to estimate the new global
variations and then we compute the difference between the ASF result and the
simplified image in order to extract all candidates: Cf ← ASF (Aminf )−Aminf .
Each candidate is then isolated and characterized with 17 features:

– Geometrical Features: the surface and 3 radii (maximum, minimum and
average). All these physical measures are ”real“ values estimated according
to measurements on the image and the magnification.

– Texture:
• Intensity Features: the average, the median and the range of intensity.

Note, since the candidates are identified after applying A−minima, their
dynamic range is guaranteed to be more than the minimum specified in
the algorithm. The average and median provides more information about
the intensity and shape.

• Basic moments.
• Contrasts.

– Shape (indexes) [3]:
• Circularity: according to radii and the inscribed disk. Gold particles are

expected to have a circular shape.
• Besicovitch symmetry: Even though the image of gold particles may be

merged, they still respect symmetry along a certain axis. Candidates
with no symmetry are unlikely to be gold particles.

• Gaussian: sigma of the best fitted circular 2D Gaussian and the residual
error of the fit. As illustrated in Figure 1, gold particles can be easily
approximated using Gaussians.

For each candidate, we compute the above features and experimented with
three different types of classifiers for identifying the gold particles.

– Logistic Regression [5] (RL) is a linear regression function particularly well-
suited to binary classification problems, allowing a variety of complex fea-
tures.

– Random Forests [6] (RF) is a powerful, state-of-the-art classifier, consisting
of an ensemble of trees.
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– Neural network [7] (NN) is non-linear classifier, whose parameters are learned
using back-propagation to minimize the cost function such as average squared
loss.

These three classifiers have very different strengths, thus we expect different
types of errors. In our approach, we combine the results from all the three clas-
sifiers using majority vote.

4 Experiments and Results

4.1 EM Images

The EM images were acquired from a realistic biological experiment. SKBR3
breast cancer cells were prepared for immuno-electronmicroscopy using Tokuyasu’s
method as previously described in [4]. Briefly, cells were chemically fixed in 4%
paraformaldehyde in PHEM buffer, washed and embedded in 12% gelatin. Af-
ter solidification, cell pellets were cut in small blocks and infiltrated in 2.3M
sucrose. Blocks were mounted on specimen pins, frozen in liquid nitrogen and
ultra-thin 80nM sections were cut with Leica cryoultramicrotome. Primary anti-
body recognizing protein disulfide isomerase localized in endoplasmic reticulum
was selected since it has been previously shown to work in immunogold labeling
for TEM (e.g. shown in [8, 9]) and includes incubation with bridging antibody
(rabbit-anti-mouse IgG) and 5 nm protein A gold particles (from Dr. George
Posthuma, UMC-Utrecht, the Netherlands), followed by contrasting in urany-
loxalate and uranylasetate-methylcellulose. Imaging was performed using iCorr
microscope (FEI).

4.2 Results

We evaluate our method using a data set of images where all the immunogold
particles are manually annotated by experts. The data set consisted of 14 images,
containing approximately 8500 gold particles. The evaluation was performed
using a leave one out cross validation: an image is discarded from the data
set, all golds from the remaining images are used to train the classifier, the
discarded image is then processed and the result evaluated. The same process
is performed for all the images, thus for a data set of N images, each image is
used 1 time for validation and N − 1 times for training. The figure 3 left show
the results for all the magnifications available. We can observe that our method
provides particularly good sensitivity (nearly 100%) for magnifications from 1 to
∼ 3nm/pixel, with a comparable specificity, which indicates that false alarms are
minimal, and only gold particles are detected. Moreover, the area under ROC is
equal to 0.9797, which demonstrates that our algorithm is effective in this task.
For magnifications greater than 4nm/pixel, the performances decrease rapidly.
This is because at this magnification, a gold is represented by approximately 4
pixels, too few pixels to extract the relevant information accurately and robustly.
At this resolution, they could easily be confused with noise in the image.
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Fig. 3. The sensitivity/specificity obtained by the classifiers: without noise and accord-
ing to the magnification (left); with artificially added noise and for a fixed magnification
of 3.16nm/pixel (right).

But in EM imaging, it is particularly frequent to acquire images altered with
Gaussian noise. In order to evaluate the algorithm’s noise sensitivity, we ar-
tificially added Gaussian noise at different levels with respect to its standard
deviation. These experiments were performed on images with a magnification
of 3.16nm/pixel, the current limit of accurate detections of gold particles. The
performance of our algorithm is not significantly altered until the noise reaches
a standard deviation of 10. Figure 3 (right) illustrates that from 10 to 20 the
sensitivity decrease but not the specificity in spite of the fact that images are al-
ready extremely degraded1 (see 4). At higher standard deviations, the specificity
starts to decrease and the number of false positive increases.

5 Conclusions

In this paper, we developed a complete pipeline for automatically detecting im-
munogold particles. First we introduced a new adaptive version of h-extrema
which filters contrasted patterns according to their dynamic and neighborhood: it
preserves contrasted patterns even in really low contrasted neighborhood. Then
this new method was successfully applied to simplify the images and find all
potential candidates. Each candidate was then classified using machine learn-
ing algorithms. The results on a data set of annotated images show that our
method detects immunogold particles in EM images with high accuracy, both
high sensitivity and specificity, even in highly noisy images.

Acknowledgments. This work was funded by Keck Foundation and NSF
award 1027834. Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the authors and do not reflect the views
of the NSF or Keck Foundation.

1 Experts do not analyze images with such quantity of noise
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(a) No noise (b) SD = 10 (c) SD = 20 (d) SD = 40

Fig. 4. Examples of detections with additive Gaussian noise at different standard de-
viations.
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